Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy

نویسندگان

  • Xiaowei Zuo
  • Congcong Zhao
  • Lin Zhang
  • Engang Wang
چکیده

We report the influence of growth rate and external magnetic field on the eutectic lamellar spacing and properties of directionally-solidified Ag-Cu eutectic alloys. The results indicated that the relationship between the lamellar spacing of directionally-solidified Ag-Cu alloys and the growth rate matched the prediction of the Jackson-Hunt model, and the constant was 5.8 µm³/s. The increasing external magnetic field during solidification tilted the growth direction of the lamellar eutectics, and coarsened the eutectic lamellar spacing. These decreased the microhardness and strength of Ag-Cu alloys, but increased their electrical conductivity. The competitive strengthening contributions between the refinement of the eutectic lamellar spacing and the change in growth direction of the eutectics resulted in higher strength in the as-rolled sample with a 0.8 T magnetic field than with other samples, which was confirmed from higher relieved deformation energy using differential scanning calorimetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of growth rate on the physical and mechanical properties of Sn-3.7Ag-0.9Zn eutectic alloy

Sn-3.7wt.%Ag-0.9wt.%Zn alloy was directionally solidified upward under different conditions, with different growth rates (V = 3.38 220.12 μm/s) at a constant temperature gradient (G = 4.33 K/mm) and with different temperature gradients (G = 4.33 -12.41 K/mm) at a constant growth rate (V = 11.52 μm/s) by using a Bridgman-type directional solidification furnace. The microstructure was observed to...

متن کامل

Effect of Sb Addition on the Solidification of Deeply Undercooled Ag-28.1 wt. % Cu Eutectic Alloy

Ag-28.1 wt. % Cu eutectic alloy solidifies in the form of eutectic dendrite at undercooling above 76 K. The remelting and ripening of the original lamellar eutectics result in the formation of the anomalous eutectics in the final microstructure. The addition of the third element Sb (0.5 and 1 wt. %) does not change the growth mode, but enlarges the volume fraction of anomalous eutectics because...

متن کامل

The Effect of Heat Treatment on Microstructure and Magnetic Properties of Nd17Fe76.5B5Cu1.5 Type Sintered Magnets

The effects of high temperature homogenization and low temperature annealing treatments on the microstructure and magnetic properties of sintered magnets of an Nd17Fe76.5B5Cu1.5 type alloy have been investigated. The microstructure of the as-cast alloy, consisted of three phases including a Nd2Fe14B1 (2:14:1- type) matrix phase Cu-containing Nd-rich Phase and Free α-iron. The as-sintered magnet...

متن کامل

The Effect of Heat Treatment on Microstructure and Magnetic Properties of Nd17Fe76.5B5Cu1.5 Type Sintered Magnets

The effects of high temperature homogenization and low temperature annealing treatments on the microstructure and magnetic properties of sintered magnets of an Nd17Fe76.5B5Cu1.5 type alloy have been investigated. The microstructure of the as-cast alloy, consisted of three phases including a Nd2Fe14B1 (2:14:1- type) matrix phase Cu-containing Nd-rich Phase and Free α-iron. The as-sintered magnet...

متن کامل

The evolution of microstructure and microhardness of Sn-Ag and Sn-Cu solders during high temperature aging

The changes in microstructure and microhardness of Sn-0.5%Ag, Sn-1.0%Ag, and Sn-0.7%Cu Pb-free solders were investigated during high temperature aging at 200°C for 2 h. As-solidified microstructures, revealed by cross-polarized light microscopy, consist of relatively large grains of β-Sn phase with twinned microstructure in both Sn-Ag and Sn-Cu solders. The bright-field light microscopy display...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016